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Gran Sasso Science Institute

About 20 people in GW group working
on GW theory, data analysis,

multi-messenger science, instrument
science.
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Program for today:

* Seismic environment of Virgo

* Gravitational coupling between seismic
field and test masses

* Mitigation of Newtonian noise
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Construction started in
1996.

First GW observations in

2017.
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Configuration changes

* Interferometer has a signal-extraction
mirror

* Interferometer has a squeezed-light
filter cavity

* Detector augmented by a
Newtonian-noise cancellation system

The Virgo Detector; J Harms




Virgo seismic noise
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In shallow waters, the evanescent In deeper waters, standing ocean
pressure field under waves couples to waves can emit pressure waves, which
sea floor. interact with sea floor.

Primary Secondary
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Seismic waves

Body waves Surface waves

Compressional waves (P) Rayleigh waves

Rayleigh waves typically dominate
seismic displacement at the surface.
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Trucks passing highway bridge
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Ventilation switch-off test

V1:ENV_NEB_MIC__FFT Airflow off
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Wind turbines at 6km to Virgo buildings

N
I
>
%)
c
o
3
o
9]
—_
L

6 8
DISTANCE (km)
Wind turbines are a strong source of |5, surface waves
o[ ”os_(strong' damping) "~ Body waves

acoustic and seismic noise detectable N T Y =y (weak damping)
over several kilometers. '
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Virgo superattenuator
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An iconic component of
the Virgo detector is the
superattenuator inside
the 10m tall towers.

It is a design choice
initially made to enable
low-frequency GW
observations.
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Virgo seismic isolation

Superattenuator

Seismic isolation

Mechanical filters

pe=
-
-
o,
-
=
-
Y
—
el
—
—
y—
—
o
=
=T
—
-
—_
-~

w— Adv LIGO
== TAMA SAS

KAGRA
| =~GEO600

Frequency [Hz]

Inverted pendulum

07/28/2022 The Virgo Detector; J Harms 15



Gravitational fluctuations

Seismic

Advected temperature fields
Mellado, 2017
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Gravity spectra

—Pressure field (obs)
Observed by ——Seismic, body wave
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Linearized density perturbation

5p(F,t) = —V - (/)(F)f(ﬁ t))

X

Neglect time variations of density here

Homogeneous medium

V.-§(r,t) n(r) - §(r, 1)

SPoulk (ro, 1) = Gﬂo/dV
%

+ OQsurt (Xo, 1) = _GQO/dS

r —ro| Ir — o]

Bulk term: (de)compression Surface term: normal surface
displacement
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Simplest analytical models

Body-wave NN

; —l > 4 7 _'1'7,._, \ \ 20 !/
(—_‘.\'_\' = f;ﬂ(;/)() [““,(‘tm E (,"()-L‘v‘,),)-,:’ 1 (( .

T How to obtain these equations:
R (TG/)()) ST * Calculate the gravitational perturbation caused
by a single plane wave
* Average over propagation directions

Surface and Rayleigh-wave NN

1
OxyN = = (2m7Gpg exp(—27h/N))* S(&; w)
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Simplest numerical models

Dipole equation (oscillating mass elements)

r —ro

da(rgp, 1) = —G/dVP(I‘)(E‘(I‘- 1) - Vo)
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Method

* Propagate waves of known
analytical form through a
finite-element model

* Numerically integrate the
associated gravity perturbation
using the dipole equation
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SIDE VIEW Q TOP VIEW TOP VIEW
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This type of simple numerical

analysis was used for the

current Virgo NN estimate

(matches Bayesian estimate).

It takes into account the
presence of clean rooms
under the towers.

pA




- = WITM (dispersion)
== NITM (dispersion)
- =  WETM (dispersion)
- = NETM (dispersion)
—— Overall NN ( 250 m/s) ;
- Qverall NN (dispersion) ||

frequency(Hz)

Lucky! Twice!

Clean rooms under the towers
increase distance between test
masses and ground

In the 10-20Hz band, the
dominant seismic waves are
extremely slow (<100m/s)
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Singha et al (2021)
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w——\/IRGO O5(low)
VIRGO O4(low)
NN without recess
NN with recess (250 m/s)

NN with recess (dispersion) |

frequency(Hz)
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Numerical models based
oh seismic correlations

Method
Example: surface NN, homogeneous model e Use observed seismic correlations
| 1 [, [« , * Integrate numerically using an
LS((S(I.Y: w) = (27TG[)(7))/(1.’))— ,)_ /d_Q —zﬁ .
=7 " (@m? + o7 appropriate kernel

_'_)‘3 — x2 | 2h
o? ( )

Seismic correlations
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Seismic correlations at Virgo

Coughlin et al (2018)

Badaracco et al (2020)
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Dynamical finite-element
simulations
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Any scenario can in principle be modelled
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Andric/Harms (2020)
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Bayesian NN estimation

Combine models and measurements

Method

/ [ A
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Measure seismic correlations
Model seismic correlations,

e.g., with SPECFEM3D

Set up surrogate model of seismic
correlations (e.g., using GPR)
Numerically integrate surrogate
model with appropriate kernel to
obtain Newtonian noise
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NN cancellation at Virgo

Seismometer arrays for O4 NNC

sub-system

30 sensors |- (et "

| Magic linear
DAQ_NEB \ bd l> box eSuinnicle
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50 sensors 4 1
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Clean GW

udla
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Linear noise cancellation

Wiener filter

Seismometer Correlations between
correlation matrix seismometers and GW data

Requires estimate of a huge number
(up to millions) of correlation
coefficients (large statistical error)

Filter is stationary
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Finite-impulse response (FIR) filter

Noise subtraction

Alternative approaches:

FIR with gradient descent

Kalman filter

Supervised ML
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Filter designs

Both linear filters have the same number of coefficients

—— Target channel
Wiener residual
—— ANN residual

Original spectrum

Residual with linear
filter calculated by
gradient descent
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Wiener filter is the optimal filter

for reduction of noise variance.

Reality: It depends on details.
Statistical errors can limit how
accurately we can calculate the
Wiener filter.
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Array Optimization

(1) Site characterization (3) Performance prediction
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(4) Final array configuration at Virgo
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Robot platforms with seismic sensors

Use the same array-optimization algorithm
in real time and converge to optimal array
configuration.

Time

BN\ 7Y |
| ' e i Sensor data
\l,- = » " FrameBuilder
€ n e Robot positions
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Detector site Infrastructure

Geometry

Collesalvetti
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Optical layout (OptoCad)

Virgo’s Central Building is small

|

Distance betwgen chambers power-recyclink masses
cannot be increased mirror

|

Limits the length of recycling
cavities, and forces you into

«riskier» solutions Signal-extraction
1 mirror

Input test

07/28/2022 The Virgo Detector; J Harms

Folded cavity
(non-degenerate
recycling cavity)

|

Multiple optics
suspended inside BS
and SE/PR towers

|

Eventually dismissed in
favor of
marginally-stable
recycling cavities
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CHRoOCC: mirror curvature correction

One cannot operate the
interferometer stably if the
main optics have the

wrong radius of curvature.

CHRoCC on the SR

Thermocamera (Zemax)
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